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Review from the earlier presentation. 
In our examination of the Linear Pool – combining probabilistic opinions into a 

convex combination of those distributions – we illustrated its failure to be 

“Externally Bayesian.”  There two experts judged events A and S independent, 

Pi(AS) = Pi(A)Pi(S) for i = 1, 2.  But the Linear Pool created a group opinion 

P3 with positive dependence.  P3(A|S) > P3(A).   

• Pooling and conditioning do not commute! 
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We used this fact to give a simple decision problem with these features. 

Choose among three treatment plans, {T1, T2, T3}, for a patient whose 

allergic state {A, A
c
} has different probabilities for the two experts.  The 

state of weather in China is denoted by the partition {S, S
c
}.  Each expert 

judges the patient’s allergic state and the weather in China independent.  

But the Linear Pool makes them positively dependent. 

          1 = A&S    2 = A&S
c
    3 = A

c
&S    4 = A

c
&S

c
 

T1  0.00   0.00   1.00   1.00 

T2  1.00   1.00   0.00   0.00  

T3  0.99               -0.01             -0.01   0.99 

Distribution P3 is the .50-.50 (convex) mixture of P1 and P2. 

     1     2     3      4 

P1  0.08   0.32   0.12   0.48 

P2  0.48   0.12   0.32   0.08  

P3  0.28   0.22   0.22   0.28 

T3 is the SEU maximizer under P3, which is objectionable to the experts 

as it spends resources (-0.01) to learn the weather in China in order to 

determine which drug to give the patient.  
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The experts agree that T3 is inadmissible in this three-way choice,  

because of their unanimity about the irrelevance of {S, S
c
}. 

 

However, neither T1 nor T2 is Pareto superior to T3.  

 

There is no one alternative to T3 that the experts agree is better. 

 

A lesson to be learned is that: 

• Pairwise comparisons between options is insufficient for determining 

a consensus among Bayesian agents. 

 

The decision theory for Bayesian consensus does not begin with a binary 

relation of preference. 
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What follows in this presentation 

 

Part 1:  Outline of a theory of coherent choice for use with IP models of 

consensus for a team.   

 Axiomatic representation of a coherent choice function. 

 

Part 2: Some issues of experimental design within this model of 

consensus 

 

 2.1  Summary of an adaptive clinical trial following this model. 

 

 2.2  About experiments that are sure to increase uncertainty – some 

things that you rather not know! 
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Consider a cooperative group of Bayesian decision makers who have 

common goals – a common utility function. 

What features of their shared beliefs will be reflected in their determination 

of acceptable options when they function as a team? 

 

Proposal:  Preserve unanimity of unacceptable options. 

 

Note: With binary choice problems, this is equivalent to the familiar 

Pareto rule  –   

If everyone strictly prefers o1 over o2, then so does the team. 

 

However, as we have seen, in a decision with more than two options it 

may be that an option (T3) is unanimously unacceptable without another 

option Pareto dominating it. 



Extending Bayesian Theory to Cooperative Groups    University of California – Irvine    (April 2, 2010) 7 

Given a (closed) set O of feasible options, a choice function C identifies 

the set A of acceptable options C[O] = A, for a non-empty subset A  O. 

 

• A choice function C is coherent across a class of problems if there is a 

set of probabilities P such that acceptable options are P –Bayes. 

 

An option is acceptable, o  A (= C[O]), just in case o is a Bayes solution 

to problem O for some P  P.  

 

 
Aside:  There may be no acceptable option if the option set is not closed, e.g., 

there is no “best” option from the continuum of utility values in [0, 1).  We use 

closed sets of options in decision problems. 
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Definition: Option  o  O has a local Bayes model P  if  

o maximizes the P-expected utility over the options in O. 

• Theorem 1 (Pearce, 1984 for finite state spaces):  If an option o  O 

fails to have a local Bayes model then it is uniformly, strictly 

dominated by a finite mixture of options already available from O.   

 

So – at least when the option space is closed under (finite) mixtures –   

strict dominance assures that admissible options are locally coherent. 

That is, then the choice function needs to be locally coherent at least. 

 

• This result is a generalization of de Finetti’s “Book” argument for 

incoherent betting.   

• It strengthens Wald’s “Complete Class” theorem as the standard for 

inadmissibility is strict dominance, not weak dominance. 
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With local coherence, only {f,g} are admissible from the triple {f,g,h};  

however, all pairs are admissible in pairwise choices.   

 

Isaac Levi calls h second worst in the triple {f, g, h}. 
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Convexify the option set.   

The locally Bayes mixed strategies  f (1- )g  are pink 

By Pearce’s Theorem, e.g., the mixed act m = .5f  .5g strictly dominates h. 

Note well that for a coherent choice function  

act m is among the acceptable acts from {f, g, m}  

if and only if   P( 2) = .5 belongs to the IP set P.  
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This observation about the acceptability of a mixed option generalizes. 

 

• Each (arbitrary) IP set of probabilities has its own distinct 

coherent choice function.   

 

• For each two different sets of distributions there is a (finite) 

decision problem where they have distinct coherent choices. 

 

 

 

Application:   

We can represent the IP set of probability distributions that 

make two events independent, since convexity of the IP set is not 

required in our approach. 
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Coherent choice functions may be characterized by axioms on acceptable 

sets that parallel familiar axioms for SEU theory 

 

SEU Coherent Preference  < 

 

Axiom1  < is a weak order. 

 

Axiom2  <  obeys Independence    o1 < o2  iff  xo1 (1-x)o3  < xo2 (1-x)o3 

 

Axiom3  Archimedes 

If o1 < o2 < o3, then  0 < x, y < 1 

xo1 (1-x)o3 <  o2 < yo1 (1-y)o3 

 

Axiom4  State-independent Utilities 

<  over constant acts reproduces within each non-null state. 
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Coherent Choice Functions 

(SSK 2010) 

 

We adapt our presentation to match these four axioms.   

 

For ease of exposition some conditions are formulated in terms of the  

rejection function, R( ) which identifies the C-inadmissible options from a 

feasible set O.   

 

Definition:   R(O) = O  C(O) 
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In place of the ordering axiom, we require the following two conditions: 

 

Axiom 1a – Sen’s (1977) property alpha   

If O2  R(O1) and O1  O3, then O2  R(O3). 

You cannot promote an unacceptable option into an acceptable option by 

adding options to the feasible set. 

 

Axiom 1b – a variant of Aizerman’s 1985 condition   

If O2  R(O1) and O3  O2, then O2  O3  R(closure[O1  O3]). 

You cannot promote an unacceptable option into an acceptable option by 

deleting unacceptable options from the option set.  

 
Note: We require closure of [O1  O3] since O1  O3 may not be a closed set, 

despite the fact that O1 and O3 are closed. 
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With Axioms 1a and 1b, define a strict partial order    on sets of options 

as follows.    

 

Let O1 and O2 be two option sets. 

 

Definition:  O1  O2   if and only if   O1      R[O1  O2].   

 

So O1  O2 obtains when O1 contains only inadmissible options in a choice 

among the options in both sets, O1  O2.  

 
Aside:  This maneuver allows us to engage our (1995) work on strict partial 

orders.
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The role of mixtures between options is captured in the following 

pair of axioms for  .   

With  O1 an option set and o an option, the notation O1  (1- )o  

denotes the set of pointwise mixtures,  o1  (1- )o  for o1  O1.   
 

Denote by H(O) the closed, convex hull of the option set O, to include 

mixed options. 
 

Axiom 2a – Independence is formulated for the relation  over sets of 

options.  Specifically, let o be an option and 0 <   1.    

O1   O2    if and only if    O1  (1- )o     O2  (1- )o. 

 

 

Axiom 2b – Mixtures   If o  O and o   R[H(O)], then o  R[O]. 

Axiom 2b asserts that inadmissible options from a mixed set remain 

so even before mixing. 
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Aside:  Two rival decision theories that have been proposed within IP 

theory each violate a different part of Axiom 2. 

• Independence (Axiom 2a) fails in -Maximin theory.  

-Maximin: Maximize minimum expected utility with respect to 

the distributions P in P.  (See Berger, 1985) 

Note: -Maximin uses only binary comparisons, since it generates a 

(real-valued) ordering of options. 

• Mixing (Axiom 2b) fails for Maximality. 

Maximality: An option o is Maximal if there is no option o  where 

EPU(o ) > EPU(o) for each P in P.  The admissible options are 

those that are Maximal.  (See Walley, 1990.) 

Note: Maximality uses only binary comparisons, also, though it does not 

generate an ordering. 



Extending Bayesian Theory to Cooperative Groups    University of California – Irvine    (April 2, 2010) 18 

 

The Archimedean condition for coherent choice functions requires a 

technical adjustment from the canonical form used by, e.g. von 

Neumann-Morgenstern theory or Anscombe-Aumann theory.  The 

canonical form is too restrictive in this setting.  (See section II.4 of our 

1995.)  The reformulated version of the Archimedean condition is as a 

continuity principle compatible with strict preference as a strict partial 

order.   It reads as follows. 

Let An and Bn (n = 1, …) be sets of options converging pointwise, 

respectively, to the option sets A and B.  Let N be an option set. 

Axiom 3a   If, for each n, Bn  An and A  N, then B  N. 

Axiom 3b   If, for each n, Bn  An and N  B, then N  A.  
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The counterpart to Axiom 4 for state-neutrality is captured by the 

following dominance relations.  Introduce two rewards, {1, 0}.   

 

Consider Anscombe-Aumann (1963) horse lotteries h1 and h2, with hi( j) 

=  ij1  (1- ij)0;  i = 1, 2  j = 1, …, n. 

Definition:   h2 weakly dominates h1 if 2j   1j for j = 1, …, n. 

 

Assume that o2 weakly dominates o1, and that a is an option different 

from each of these two. 

Axiom 4a If o2  O and a  R({o1}  O) then a  R(O). 

Axiom 4b If o1  O and a  R(O) then a  R({o2}  [O  {o1}]). 
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In words, Axiom 4a says that when a weakly dominated option is 

removed from the set of options, other inadmissible options remain 

inadmissible.  So, by Axiom 1, when an option is replaced in the option 

set by one that it weakly dominates, other admissible options remain 

admissible. 

 

Axiom 4b says that when an option is replaced by one that weakly 

dominates it, (other) inadmissible options remain inadmissible.   

 

Trivially by Axiom 1, merely adding a weakly dominating option cannot 

promote an inadmissible option into one that is admissible. 
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Main Result on Representation 

A choice function C is coherent  if and only if  it satisfies these (4-pairs of) 

axioms. 

 

A choice function satisfies these axioms if and only if  

it is given by a non-empty set P of global Bayes probability models. 

 

The axioms suffice for representing a choice function with the  

coherence rule for admissibility applied to a (unique) set of  

Probability/Almost-state-independent utility pairs. 

Different sets P are identified with different coherent choice functions. 

  

We offer a sufficient condition for representation using a single, state-

independent utility on rewards. 

 



Extending Bayesian Theory to Cooperative Groups    University of California – Irvine    (April 2, 2010) 22 

Return to the principal question about consensus. 

• What features of their shared beliefs and values will be reflected in 

their determination of acceptable options as a team?  

 

Proposal:  Preserve unanimity of unacceptable options. 

Note: With binary choice problems, this is equivalent to an 

unrestricted Pareto rule  –   

If everyone strictly prefers o1 over o2, then so does the team. 

 

This proposal results in taking the team’s coherent choice function to be 

the one given by a set of global probabilities, PT , formed by taking the 

union of the experts’ individual sets Pi (i = 1, .., n) of global probabilities:  

PT = i Pi. 
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2 - Experimental design within this model of consensus for a team. 

2.1   Outline of an adaptive clinical trial – Kadane (1996). 

The trial investigates the efficacy of two treatments for controlling blood 

pressure during open-heart surgery: verapamil vs. nitroprusside. 

 

Team Utility: The agreed goal for each patienbt is regulation of the 30-

minute deviation of mean arterial systolic pressure from the target of 80 

mmHg.   

 

Probabilities: 5 experts were interviewed and their opinions elicited to 

identify their (prior) opinions about the relevant medical factors for 

predicting patient outcomes (for qualifying patients) under the rival 

treatments.   

 This yielded a model with 16 patient types based on 4 binary 

classifiers. 
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Allocation rule: Patients were admitted sequentially.  In each case, based 

on an updated IP model for the 5 experts – updated by the data acquired 

to date in the trial – it was determined whether the group of 5 was 

unanimous:  Was one of the two treatments T* Pareto superior for that 

patient. 

 If so, that treatment T* was used. 

 If not, so that relative to the set of 5 updated expert opinions each 

treatment was acceptable with respect to the goal of regulating the 

patient’s mean blood pressure deviation, then the patient was assigned in 

order to make the outcome most informative, e.g., by balancing the legs 

of the trial. 

 

The comparison of prior and posterior favored treatments (after 49 

patients) is reported in the next slide.
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More informative are shifts from prior to posterior predictive means. 

Note:  The allocation rule does not require randomization! 
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2.2  Dilation for IP sets of probabilities –  

some things you rather not know!  [S & W, 1993] 

Let P be a (convex) set of probabilities on an algebra A. 

For an event E,   

 denote by P*(E) the “lower” probability of E: infP {P(E)} 

and  denote by P*(E) the “upper” probability of E: supP {P(E)}.  

 

Let B = <B1, ..., Bn> be a (finite) partition.   

 Think of B as an experiment to determine which Bi obtains. 

 

Defn.  The set of conditional probabilities {P(E | Bi)} dilate if 

   P*(E | Bi)  <  P*(E)    P*(E)    P*(E | Bi)       (i = 1, ..., n). 

Dilation occurs provided that, for each event (Bi) in a partition, the 

conditional probabilities for an event E, given Bi, properly include the 

unconditional probabilities for E.   

With dilation, IP-uncertainty – the spread between the lower and upper 

probability – is sure to increase:  anti-convergence of posterior probabilities. 
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Heuristic Example 

 Suppose A is a highly uncertain event in the added sense of 

“uncertainty” that comes with a set of probabilities P.   

 That is    P*(A)  -  P*(A)    1. 

Let {H,T} indicate the flip of a fair coin whose outcomes are independent of 

A.  That is, P(A,H) = P(A) /2 for each P   P.   Define event E by,  E = {(A,H) 

, (A
c
,T)}.  

 

 

 

 

  

 

 

 

It follows, simply, that P(E) = .5 for each P  P. 

Then     0  P*(E | H) < P*(E)  =  P*(E)  <  P*(E | H)  1 

and     0  P*(E | T) <  P*(E)  =  P*(E)  <  P*(E | T)  1. 
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P (P) experiences dilation if and only if 

 case 1:  SP(A1,B1) > 1   

    >  [SP(A1,B1) - 1]  max{ P(A1)/P(A2) ;  P(B1)/P(B2) }    

  

  case 2:  SP(A1,B1) < 1   

    >  [1 - SP(A1,B1)]  max{ 1 ;  P(A1)P(B1)/P(A2)P(B2) } 

 

and case 3:  SP(A1,B1) = 1     

  P is internal to the simplex of all distributions.  

 

Thus, dilation occurs in the -contaminated model if and only if the focal 

distribution, P, is close enough (in the tetrahedron of distributions on four 

atoms) to the saddle-shaped surface of distributions which make A and B 

independent.   

Here, SP provides one relevant index of the proximity of the focal 

distribution P to the surface of independence.  
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Dilation creates a new challenge for the design of experiments. 

 

• Design experiments to avoid dilation! 

 

The significance of this challenge is heightened by the following result. 

 

A neighborhood model (with focal distribution P) is called symmetric if, 

when P is the uniform distribution, a neighborhood is closed under 

permuation of the atoms. 

 

• The only symmetric neighborhood model that is dilation immune is 

the Density Ratio model! 
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Summary of our IP-model of consensus for a team 

• Coherent choice does not reduce to binary comparisons between 

the options available. 

 

• Each two IP sets of probabilities yield different coherent choices. 

• Coherent choice is axiomatized by constraints on choice functions 

that parallel the familiar axioms for coherent (binary) preferences. 

• Experimental design with respect to an IP-set may permit: 

o The shared data to induce a (familiar) merging of posterior 

probabilities and a resulting concentration of the posterior IP-

set. 

OR 

o Dilating the set of IP probabilities, resulting in added 

uncertainty for sure. 

Experimental design for an IP set is not Fisher’s Design of Experiments! 

  



Extending Bayesian Theory to Cooperative Groups    University of California – Irvine    (April 2, 2010) 36 

Selected References 

Anscombe, F.J. and Aumann, R.J. (1963) “A definition of subjective probability” Ann  

Math. Statist. 34: 199-205. 

Berger, J. (1985). Statistical Decision Theory, 2nd ed. Springer, New York.  

Goodman, J. (1988) Existence of Compromises in Simple Group Decisions. Ph.D. thesis.  

Dept. of Statistics. Carnegie Mellon Univ. 

Huber, P. J. (1981). Robust Statistics. Wiley, New York. 

Kadane, J.B. ed. (1996) Bayesian Methods and Ethics in a Clinical Trial Design Wiley, N.Y. 

Levi, I. (1974) “On indeterminate probabilities” J.Phil. 71: 391-418. 

Levi, I. (1980) The Enterprise of Knowledge. MIT Press. 

Pearce, D. (1984) “Rationalizable Strategic Behavior and the Problem of Perfection,”  

Econometrica 52: 1029-1050. 

Seidenfeld, T., Kadane, J.B., and Schervish, M. (1989) “On the shared preferences of  

 two Bayesian decision makers,” J.Phil. 89: 225-244. 

Seidenfeld, T., Schervish, M.J., and Kadane, J.B. (1995) “A representation of partially  

ordered preferences,” Ann Stat. 23: 2168-2217. 

Seidenfeld, T., Schervish, M.J., and Kadane, J.B. (2010) “Coherent Choice Functions,”   

 Synthese 172: 157-176, 2010. 

Seidenfeld, T. and Wasserman, L. (1993) “Dilation for Sets of Probabilities”  Ann.  

 Statistics  21: 1139-1154. 

Sen, A. (1977) “Social choice theory: a re-examination,” Econometrica 45: 53-89. 

Walley, P. (1990) Statistical Reasoning with Imprecise Probabilities. Chapman and Hall,  

London. 


